Advertisements
Advertisements
प्रश्न
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
उत्तर
Since
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., we have:
\[\frac{c + a}{b} - \frac{b + c}{a} = \frac{a + b}{c} - \frac{c + a}{b}\]
\[ \Rightarrow \frac{ac + a^2 - b^2 - bc}{ab} = \frac{ab + b^2 - c^2 - ac}{bc}\]
\[ \Rightarrow \frac{\left( a + b \right)\left( a - b \right) + c\left( a - b \right)}{ab} = \frac{\left( b + c \right)\left( b - c \right) + a\left( b - c \right)}{bc}\]
\[ \Rightarrow \frac{\left( a - b \right)\left( a + b + c \right)}{ab} = \frac{\left( b - c \right)\left( a + b + c \right)}{bc}\]
\[ \Rightarrow \frac{\left( a - b \right)}{ab} = \frac{\left( b - c \right)}{bc}\]
\[ \Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}\]
Hence,
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
APPEARS IN
संबंधित प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Is 302 a term of the A.P. 3, 8, 13, ...?
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
How many numbers of two digit are divisible by 3?
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of first n natural numbers.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If m th term of an A.P. is n and nth term is m, then write its pth term.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.