Advertisements
Advertisements
प्रश्न
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
उत्तर
\[\text { We have }: \]
\[ 7 - 9 = - 2\]
\[5 - 7 = - 2\]
\[3 - 5 = - 2\]
\[\text { Thus, the sequence is an A . P . with the common difference being } ( - 2) . \]
\[\text { The next three terms are as follows }: \]
\[3 - 2 = 1\]
\[1 - 2 = - 1\]
\[ - 1 - 2 = - 3\]
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Which term of the A.P. 4, 9, 14, ... is 254?
Is 68 a term of the A.P. 7, 10, 13, ...?
Is 302 a term of the A.P. 3, 8, 13, ...?
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.