हिंदी

If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is - Mathematics

Advertisements
Advertisements

प्रश्न

If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is

विकल्प

  • \[\frac{ab}{2 (b - a)}\]

  • \[\frac{ab}{b - a}\]

  • \[\frac{3 ab}{2 (b - a)}\]

  • none of these

MCQ

उत्तर

\[\frac{3 ab}{2 (b - a)}\]

Let the A.P. be a, a+d, a+2d........a+nd.
Here, let d be the common difference and n be the total number of terms.

\[a_1 = a, \]

\[ a_2 = b\]

\[ \Rightarrow a + d = b\]

\[ \Rightarrow d = b - a . . . . . \left( 1 \right)\]

\[ a_n = 2a\]

\[ \Rightarrow a + \left( n - 1 \right)d = 2a\]

\[ \Rightarrow \left( n - 1 \right)d = a\]

\[ \Rightarrow d = \frac{a}{n - 1} . . . . . \left( 2 \right)\]

Given:

From equations \[\left( 1 \right) \text { and } \left( 2 \right),\] we have:

\[\Rightarrow \frac{a}{n - 1} = b - a\]

\[ \Rightarrow \frac{a}{b - a} + 1 = n\]

\[ \Rightarrow \frac{a + b - a}{b - a} = n\]

\[ \Rightarrow \frac{b}{b - a} = n\]

Now, sum of n terms of an A.P.:

\[S = \frac{n}{2}\left\{ a + a_n \right\}\]

\[ = \frac{n}{2}\left( 3a \right)\]

\[ = \frac{3ab}{2\left( b - a \right)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.9 | Q 18 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the A.P. 84, 80, 76, ... is 0?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the common difference of an A.P. whose nth term is xn + y.


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×