Advertisements
Advertisements
प्रश्न
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
उत्तर
Let a be the first term and d be the common difference. Then,
\[a_4 + a_8 = 24\]
\[ \Rightarrow a + \left( 4 - 1 \right)d + a + \left( 8 - 1 \right)d = 24\]
\[ \Rightarrow a + 3d + a + 7d = 24\]
\[ \Rightarrow 2a + 10d = 24 \]
\[ \Rightarrow a + 5d = 12 . . . (i)\]
\[\text { Also }, a_6 + a_{10} = 34\]
\[ \Rightarrow a + \left( 6 - 1 \right)d + a + \left( 10 - 1 \right)d = 34\]
\[ \Rightarrow a + 5d + a + 9d = 34\]
\[ \Rightarrow 2a + 14d = 34\]
\[ \Rightarrow a + 7d = 17 . . . (ii)\]
\[\text { Solving (i) and (ii), we get }: \]
\[2d = 5\]
\[ \Rightarrow d = \frac{5}{2}\]
\[\text { Substituing the value in (i), we get }: \]
\[a + 5\left( \frac{5}{2} \right) = 12\]
\[ \Rightarrow a + \frac{25}{2} = 12\]
\[ \Rightarrow a = \frac{- 1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
Find:
nth term of the A.P. 13, 8, 3, −2, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 84, 80, 76, ... is 0?
Is 68 a term of the A.P. 7, 10, 13, ...?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.