हिंदी

A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. - Mathematics

Advertisements
Advertisements

प्रश्न

A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?

योग

उत्तर

value of used tractor = Rs. 12000

cash payment = Rs. 6000

balance = Rs. 12000 – Rs. 6000 = Rs. 6000

payment of an installment = Rs. 500 

total installments = `6000/12 = 12`

P Interest on principal at 12% per annum for 1 year = `("p" xx 12 xx 1)/100 = 3/25 "P"`

Payment of amount after one year = 500 + Interest 

= `500 + 3/25 xx 6000`

Interest after two years = `3/25` × Rs. 5500 Installment

Payment after 2 years = `(500 + 3/25 xx 5500) "Rs"`

Installment after 12 years = 12 × 500 = 6000

Interest = `3/25 (6000 + 5500 + 5000 + ......  "to 12 terms")`

= `3/25 xx 12/2  [12000 - (12 - 1) xx 500]`

= `3/25 xx 12/2  [12000 - 5500]`

= `3/25 xx 12/2 xx 6500`

=  Rs. 4680 

Total payment = Rs. (12000 + 4680)  

= Rs. 16680

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 27 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find:

nth term of the A.P. 13, 8, 3, −2, ...


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of first n natural numbers.


Find the sum of all odd numbers between 100 and 200.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


Write the common difference of an A.P. whose nth term is xn + y.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×