हिंदी

Show that the Sum of (M + N)Th And (M – N)Th Terms of an A.P. is Equal to Twice The Mth Term. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.

उत्तर

Let a and d be the first term and the common difference of the A.P. respectively.

It is known that the kth term of an A. P. is given by

ak = a + (k –1) d

∴ am + n = a + (m + n –1) d

am – n = a + (m – n –1) d

am a + (m –1) d

∴ am + n + am – n = a + (m + n –1) d + a + (m – n –1) d

= 2a + (m + n –1 + m – n –1) d

= 2a + (2m – 2) d

= 2a + 2 (m – 1) d

=2 [a + (m – 1) d]

= 2am

Thus, the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 1 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Is 68 a term of the A.P. 7, 10, 13, ...?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


How many numbers of two digit are divisible by 3?


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of odd integers from 1 to 2001.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×