हिंदी

If Sn = N2 P and Sm = M2 P, M ≠ N, in an A.P., Prove that Sp = P3. - Mathematics

Advertisements
Advertisements

प्रश्न

If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.

उत्तर

\[S_n = n^2 p\]

\[ \Rightarrow \frac{n}{2}\left[ 2a + (n - 1)d \right] = n^2 p\]

\[ \Rightarrow 2np = 2a + (n - 1)d . . . (i)\]

\[ S_m = m^2 p\]

\[ \Rightarrow \frac{m}{2}\left[ 2a + (m - 1)d \right] = m^2 p\]

\[ \Rightarrow 2mp = 2a + (m - 1)d . . . (ii)\]

\[\text { Subtracting (ii) from (i), we get }: \]

\[2p(n - m) = (n - m)d\]

\[ \Rightarrow 2p = d . . . (iii)\]

\[\text { Substituing the value in (i), we get }: \]

\[nd = 2a + (n - 1)d\]

\[ \Rightarrow nd - nd + d = 2a\]

\[ \Rightarrow a = \frac{d}{2} = p \left[ \text { from }(iii) \right] . . . (iv)\]

\[ \therefore S_p = \frac{p}{2}\left[ 2a + \left( p - 1 \right)d \right]\]

\[ \Rightarrow S_p = \frac{p}{2}\left[ 2p + \left( p - 1 \right)2p \right]\]

\[ \Rightarrow S_p = \frac{p}{2}\left[ 2p + 2 p^2 - 2p \right]\]

\[ \Rightarrow S_p = \frac{p}{2}\left[ 2 p^2 \right]\]

\[ \Rightarrow S_p = p^3 \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 21 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 4, 9, 14, ... is 254?


Is 68 a term of the A.P. 7, 10, 13, ...?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers of two digit are divisible by 3?


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all integers between 50 and 500 which are divisible by 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

Write the sum of first n even natural numbers.


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×