Advertisements
Advertisements
प्रश्न
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
उत्तर
Let total number of terms be 2n.
According to question, we have:
\[a_1 + a_3 + . . . + a_{2n - 1} = 24 . . . (1)\]
\[ a_2 + a_4 + . . . + a_{2n} = 30 . . . (2)\]
\[\text { Subtracting (1) from (2), we get: } \]
\[\left( d + d + . . . + \text { upto n terms } \right) = 6\]
\[ \Rightarrow nd = 6 . . . (3)\]
\[\text { Given }: \]
\[ a_{2n} = a_1 + \frac{21}{2}\]
\[ \Rightarrow a_{2n} - a_1 = \frac{21}{2}\]
\[ \Rightarrow a + (2n - 1)d - a = \frac{21}{2} [ \because a_{2n} = a + (2n - 1)d, a_1 = a]\]
\[ \Rightarrow 2nd - d = \frac{21}{2}\]
\[ \Rightarrow 2 \times 6 - d = \frac{21}{2} \left( \text { From }(3) \right)\]
\[ \Rightarrow d = \frac{3}{2}\]
\[\text { Putting the value in (3), we get: } \]
\[n = 4\]
\[ \Rightarrow 2n = 8\]
\[\text { Thus, there are 8 terms in the progression } . \]
\[\text { To find the value of the first term: } \]
\[ a_2 + a_4 + . . . + a_{2n} = 30\]
\[ \Rightarrow (a + d) + (a + 3d) + . . . + [a + (2n - 1)d] = 30\]
\[ \Rightarrow \frac{n}{2}\left[ \left( a + d \right) + a + (2n - 1)d \right] = 30\]
\[\text { Putting n = 4 and d }= \frac{3}{2}, \text { we get: } \]
\[ a = \frac{3}{2}\]
\[\text { So, the series will be } 1\frac{1}{2}, 3, 4\frac{1}{2} . . .\]
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of first n odd natural numbers.
Find the sum of all odd numbers between 100 and 200.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find the sum of odd integers from 1 to 2001.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.