Advertisements
Advertisements
प्रश्न
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
उत्तर
Given that Sn = 2n + 3n2
⇒ S1 = 2 × 1 + 3(1)2 = 5
⇒ S2 = 2 × 2 + 3 × 4 = 16
⇒ S3 = 2 × 3 + 3 × 9 = 33
… … …
∴ S1 = a1 = 5
S2 – S1 = a2
= 16 – 5
= 11
∴ d = a2 – a1
= 11 – 5
= 6
Now Tr = a1 + (r – 1)d
= 5 + (r – 1)6
= 5 + 6r – 6
= 6r – 1
Hence, the required rth term is 6r – 1.
APPEARS IN
संबंधित प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Is 302 a term of the A.P. 3, 8, 13, ...?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
How many numbers of two digit are divisible by 3?
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all integers between 100 and 550, which are divisible by 9.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
Write the sum of first n odd natural numbers.
Write the sum of first n even natural numbers.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.