Advertisements
Advertisements
प्रश्न
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
उत्तर
The given A.P. is 25,.22,.19.....
Here, a = 25, d = \[22 - 25 = - 3\]
\[S_n = 116\]
\[ \Rightarrow \frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right] = 116\]
\[ \Rightarrow n\left[ 2 \times 25 + \left( n - 1 \right)\left( - 3 \right) \right] = 232\]
\[ \Rightarrow 50n - 3 n^2 + 3n = 232\]
\[ \Rightarrow 3 n^2 - 53n + 232 = 0\]
\[\Rightarrow 3 n^2 - 29n - 24n + 232 = 0\]
\[ \Rightarrow n(3n - 29) - 8(3n - 29) = 0\]
\[ \Rightarrow (3n - 29)(n - 8) = 0\]
\[ \Rightarrow n = \frac{29}{3} \text { or }8\]
\[\text { Since n cannot be a fraction, } n = 8 . \]
\[\text {Thus, the last term }: \]
\[ a_n = a + (n - 1)d\]
\[ \Rightarrow a_8 = 25 + \left( 8 - 1 \right) \times \left( - 3 \right)\]
\[ \Rightarrow a_8 = 4\]
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Find the sum of odd integers from 1 to 2001.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. whose nth term is xn + y.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.