Advertisements
Advertisements
प्रश्न
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
उत्तर
We have,
the distance travelled to bring the first potato, a1 = 2 \[\times\]24 = 48 m,
the distance travelled to bring the second potato, a2 = 2 \[\times\] (24 + 4) = 56 m,
the distance travelled to bring the third potato, a3 = 2 \[\times\] (24 + 4 + 4) = 64 m,
\[\text { As, } a_2 - a_1 = 56 - 48 = 8\text { and } a_3 - a_2 = 64 - 56 = 8\]
\[\text { i . e } . a_2 - a_1 = a_3 - a_2 \]
\[\text { So, } a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]
\[\text { Also, } a = 48, d = 8, n = 20\]
\[\text { Now }, \]
\[ S_{20} = \frac{20}{2}\left[ 2a + \left( 20 - 1 \right)d \right]\]
\[ = 10\left[ 2 \times 48 + 19 \times 8 \right]\]
\[ = 10 \times \left( 96 + 152 \right)\]
\[ = 10 \times 248\]
\[ = 2480\]
So, he would have to run 2480 m to bring back all the potatoes.
APPEARS IN
संबंधित प्रश्न
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.