हिंदी

A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month there - Mathematics

Advertisements
Advertisements

प्रश्न

A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?

योग

उत्तर

Given that fixed increment in the salary of a man

= Rs. 320 each month

Initial salary = Rs. 5200 which makes an A.P.

whose first term (a) = Rs. 5200 and common difference (d) = Rs. 320

Total earning during the first year (12 months)

S12 = 122[2×5200+(12-1)×320]  .....[Sn=n2[2a+(n-1)d]]

= 6[10400 + 3520]

= 6 × 13920

= Rs. 83520

Hence, the required amount is Rs. 83520

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise | Q 3.(ii) | पृष्ठ १६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many terms of the A.P.  -6 , -112 , -5... are needed to give the sum –25?


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


if an+bnan-1+bn-1 is the A.M. between a and b, then find the value of n.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find an+1an for n = 1, 2, 3, 4, 5.

 


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find: 

18th term of the A.P.

2,32,52,


Which term of the A.P. 4, 9, 14, ... is 254?


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, 112, −5, ... are needed to give the sum −25?


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is p+q2[a+b+a-bp-q].


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


If b2, a2, c2 are in A.P., then 1a+b,1b+c,1c+a will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.