Advertisements
Advertisements
प्रश्न
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
उत्तर
\[\text { Given }: \]
\[ a = 2, S_5 = \frac{1}{4}\left( S_{10} - S_5 \right)\]
\[\text { We have: } \]
\[ S_5 = \frac{5}{2} \left[ 2 \times 2 + (5 - 1)d \right]\]
\[ \Rightarrow S_5 = 5\left[ 2 + 2d \right] . . . . (i)\]
\[\text { Also }, S_{10} = \frac{10}{2}\left[ 2 \times 2 + (10 - 1)d \right]\]
\[ \Rightarrow S_{10} = 5\left[ 4 + 9d \right] . . . . . (ii)\]
\[ \because S_5 = \frac{1}{4}\left( S_{10} - S_5 \right) \]
\[\text { From (i) and (ii), we have: } \]
\[ \Rightarrow 5\left[ 2 + 2d \right] = \frac{1}{4}\left[ 5(4 + 9d) - 5(2 + 2d) \right]\]
\[ \Rightarrow 8 + 8d = 4 + 9d - 2 - 2d\]
\[ \Rightarrow d = - 6\]
\[ \therefore a_{20} = a + \left( 20 - 1 \right)d\]
\[ \Rightarrow a_{20} = a + 19d\]
\[ \Rightarrow a_{20} = 2 + 19\left( - 6 \right)\]
\[ \Rightarrow a_{20} = - 112\]
APPEARS IN
संबंधित प्रश्न
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of first n natural numbers.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
Write the common difference of an A.P. whose nth term is xn + y.
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
Write the sum of first n odd natural numbers.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.