Advertisements
Advertisements
प्रश्न
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
उत्तर
Given:
an = n3 − 6n2 + 11n − 6, n ϵ N
\[\text { For } n = 1, a_1 = 1^3 - 6 \times 1^2 + 11 \times 1 - 6 = 0\]
\[\text { For } n = 2, a_2 = 2^3 - 6 \times 2^2 + 11 \times 2 - 6 = 0\]
\[\text { For } n = 3, a_3 = 3^3 - 6 \times 3^2 + 11 \times 3 - 6 = 0\]
\[\text { For } n = 4, a_4 = 4^3 - 6 \times 4^2 + 11 \times 4 - 6 = 6 > 0\]
\[\text { For } n = 5, a_5 = 5^3 - 6 \times 5^2 + 11 \times 5 - 6 = 24 > 0\]
\[\text { and so on }\]
\[\text { Thus, the first three terms are zero and the rest of the terms are positive in the sequence }. \]
APPEARS IN
संबंधित प्रश्न
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Which term of the A.P. 84, 80, 76, ... is 0?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
How many numbers of two digit are divisible by 3?
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
Find the sum of odd integers from 1 to 2001.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
Write the common difference of an A.P. whose nth term is xn + y.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.