मराठी

A Sequence is Defined by an = N3 − 6n2 + 11n − 6, N ϵ N. Show that the First Three Terms of the Sequence Are Zero and All Other Terms Are Positive. - Mathematics

Advertisements
Advertisements

प्रश्न

A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.

उत्तर

Given:
an = n3 − 6n2 + 11n − 6, n ϵ N

\[\text { For } n = 1, a_1 = 1^3 - 6 \times 1^2 + 11 \times 1 - 6 = 0\]

\[\text { For } n = 2, a_2 = 2^3 - 6 \times 2^2 + 11 \times 2 - 6 = 0\]

\[\text { For } n = 3, a_3 = 3^3 - 6 \times 3^2 + 11 \times 3 - 6 = 0\]

\[\text { For } n = 4, a_4 = 4^3 - 6 \times 4^2 + 11 \times 4 - 6 = 6 > 0\]

\[\text { For } n = 5, a_5 = 5^3 - 6 \times 5^2 + 11 \times 5 - 6 = 24 > 0\]

\[\text { and so on }\]

\[\text { Thus, the first three terms are zero and the rest of the terms are positive in the sequence }. \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.1 | Q 2 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all even integers between 101 and 999.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×