मराठी

If the Sum of P Terms of an A.P. is Q and the Sum of Q Terms is P, Then the Sum of P + Q Terms Will Be - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be

पर्याय

  • 0

  •  p − q

  • p + q

  •  − (p + q)

MCQ

उत्तर

 − (p + q)

\[S_p = q\]

\[ \Rightarrow \frac{p}{2}\left\{ 2a + \left( p - 1 \right)d \right\} = q\]

\[ \Rightarrow 2ap + \left( p - 1 \right)pd = 2q . . . . . \left( 1 \right)\]

\[ S_q = p\]

\[ \Rightarrow \frac{q}{2}\left\{ 2a + \left( q - 1 \right)d \right\} = p\]

\[ \Rightarrow 2aq + \left( q - 1 \right)qd = 2p . . . . . \left( 2 \right)\]

\[\text { Multiplying equation } \left( 1 \right) \text { by q and equation } \left( 2 \right) \text { by p and then solving, we get }: \]

\[d = \frac{- 2\left( p + q \right)}{pq}\]

\[\text { Now }, S_{p + q} = \frac{\left( p + q \right)}{2}\left[ 2a + \left( p + q - 1 \right)d \right]\]

\[ = \frac{p}{2}\left[ 2a + \left( p - 1 \right)d + qd \right] + \frac{q}{2}\left[ 2a + \left( q - 1 \right)d + pd \right]\]

\[ = S_p + \frac{pqd}{2} + S_q + \frac{pqd}{2}\]

\[ = p + q + pqd\]

\[ = p + q - \frac{2\left( p + q \right)pq}{pq}\]

\[ = - (p + q)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.9 | Q 2 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all odd numbers between 100 and 200.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Find the sum of odd integers from 1 to 2001.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


Write the sum of first n odd natural numbers.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×