मराठी

In N A.M.'S Are Introduced Between 3 and 17 Such that the Ratio of the Last Mean to the First Mean is 3 : 1, Then the Value of N is - Mathematics

Advertisements
Advertisements

प्रश्न

In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is

पर्याय

  • 6

  • 8

  • 4

  •  none of these.

MCQ

उत्तर

6

Let 

\[A_1 , A_2 , A_3 , A_4 . . . . A_n\] be the n arithmetic means between 3 and 17.
Let d be the common difference of the A.P. 3,

\[A_1 , A_2 , A_3 , A_4 , . . . . A_n\] and 17.
Then, we have:

d = \[\frac{17 - 3}{n + 1}\] = \[\frac{14}{n + 1}\]

Now, 

\[A_1\] = 3 + d = 3 + \[\frac{14}{n + 1}\] = \[\frac{3n + 17}{n + 1}\]

And, 

\[A_n = 3 + nd = 3 + n\left( \frac{14}{n + 1} \right) = \frac{17n + 3}{n + 1}\]

\[\therefore \frac{A_n}{A_1} = \frac{3}{1}\]

\[ \Rightarrow \frac{\left( \frac{17n + 3}{n + 1} \right)}{\left( \frac{3n + 17}{n + 1} \right)} = \frac{3}{1}\]

\[ \Rightarrow \frac{17n + 3}{3n + 17} = \frac{3}{1}\]

\[ \Rightarrow 17n + 3 = 9n + 51\]

\[ \Rightarrow 8n = 48\]

\[ \Rightarrow n = 6\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.9 | Q 5 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the A.P. 3, 8, 13, ... is 248?


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of first n odd natural numbers.


Find the sum of all odd numbers between 100 and 200.


Find the sum of all even integers between 101 and 999.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×