Advertisements
Advertisements
प्रश्न
Find the sum of first n odd natural numbers.
उत्तर
The first n odd natural numbers are:
1, 3, 5, 7, 9...
a = 1, d = 2, Total terms = n
\[S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ 2 \times 1 + (n - 1)2 \right]\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ 2 + (n - 1)2 \right]\]
\[ \Rightarrow S_n = \frac{n}{2}\left[ 2n \right]\]
\[ \Rightarrow S_n = n^2\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.