मराठी

A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year? - Mathematics

Advertisements
Advertisements

प्रश्न

A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?

बेरीज

उत्तर

Let Rs. x be saved in first year

Annual increment = Rs. 200

Which forms an A.P.

First term = a and common difference d = 200

n = 20 years

∴ Sn = `n/2[2a + (n - 1)d]`

⇒ S20 = `20/2 [2a + (20 - 1) 200]`

⇒ 66000 = 10[2a + 3800]

⇒ 6600 = 2a + 3800

⇒ 2a = 6600 – 3800

⇒ 2a = 2800

⇒ a = 1400

Hence, the man saved Rs. 1400 in the first year.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise | Q 2 | पृष्ठ १६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


Find the sum of all integers between 50 and 500 which are divisible by 7.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×