Advertisements
Advertisements
प्रश्न
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
पर्याय
4
6
8
10
उत्तर
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to 6.
Explanation:
Sn = `n/2 [2a + (n - 1)d]`
∴ S2n = `(2n)/2 [2a + (2n - 1)d]`
3Sn = `(3n)/2 [2a + (3n - 1)d]`
We have S2n = 3 · Sn
⇒ `(2n)/2 [2a + (2n - 1)d] = 3 * n/2 [2a + (n - 1)d]`
⇒ 2[2a + (2n – 1)d] = 3[2a + (n – 1)d]
⇒ 4a + (4n – 2)d = 6a + (3n – 3)d
⇒ 6a + (3n – 3)d – 4a – (4n – 2)d = 0
⇒ 2a + (3n – 3 – 4n + 2)d = 0
⇒ 2a + (– n – 1)d = 0
⇒ 2a – (n + 1)d = 0
⇒ 2a = (n + 1)d ....(i)
Now S3n: Sn = `(3n)/2 [2a + (3n - 1)d] : n/2 [2a + (n - 1)d]`
= `((3n)/2 [2a + (3n - 1)d])/(n/2 [2a + (n - 1)d])`
= `(3[2a + (3n - 1)d])/(2a + (n - 1)d)`
= `(3[(n + 1)d + (3n - 1)d])/((n + 1)d + (n - 1)d)`
= `(3d[n + 1 + 3n - 1])/(d(n + 1 + n - 1))`
= `(3[4n])/(2n)`
= 6
APPEARS IN
संबंधित प्रश्न
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 84, 80, 76, ... is 0?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.