मराठी

A Man Accepts a Position with an Initial Salary of ₹5200 per Month. It is Understood that He Will Receive an Automatic Increase of ₹320 in the Very Next Month and Each Month Thereafter. (I) Fi - Mathematics

Advertisements
Advertisements

प्रश्न

A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?

उत्तर

We have,
the initial salary, a1 = ₹5200,
the salary of the second month, a2 = ₹5200 + ₹320 = ₹5520,
the salary of the third month, a3 = ₹5520 + ₹320 = ₹5840,

\[\text { As, } a_2 - a_1 = 5520 - 5200 = 320 \text { and } a_3 - a_2 = 5840 - 5520 = 320\]

\[i . e . a_2 - a_1 = a_3 - a_2 \]

\[\text { So, } a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]

\[\text { Also, } a = 5200, d = 320\]

\[\left( i \right) a_{10} = a + \left( 10 - 1 \right)d\]

\[ = 5200 + 9 \times 320\]

\[ = 5200 + 2880\]

\[ = 8080\]

\[\text { So, the salary of the man for the tenth month is } ₹ 8, 080 . \]

\[\left( ii \right) S_{12} = \frac{12}{2}\left[ 2a + \left( 12 - 1 \right)d \right]\]

\[ = 6\left( 2 \times 5200 + 11 \times 320 \right)\]

\[ = 6\left( 10400 + 3520 \right)\]

\[ = 6 \times 13920\]

\[ = 83520\]

\[\text { So, the total earnings of the man during the first year is } ₹ 83, 520 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.7 | Q 15 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Which term of the A.P. 4, 9, 14, ... is 254?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


Find the sum of odd integers from 1 to 2001.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. whose nth term is xn + y.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×