मराठी

If Log 2, Log (2x − 1) and Log (2x + 3) Are in A.P., Write the Value Of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.

उत्तर

The numbers log 2, log (2x − 1) and log (2x + 3) are in A.P.

\[\therefore \log \left( 2^x - 1 \right) - \log 2 = \log \left( 2^x + 3 \right) - \log \left( 2^x - 1 \right)\]

\[ \Rightarrow \log \left( \frac{2^x - 1}{2} \right) = \log \left( \frac{2^x + 3}{2^x - 1} \right)\]

\[ \Rightarrow \frac{2^x - 1}{2} = \frac{2^x + 3}{2^x - 1}\]

\[ \Rightarrow \left( 2^x - 1 \right)^2 = 2\left( 2^x + 3 \right)\]

\[ \Rightarrow 2^{2x} + 1 - 2 . 2^x = 2 . 2^x + 6\]

\[ \Rightarrow 2^{2x} - 4 . 2^x - 5 = 0\]

\[\text { Let } 2^x = y . \]

\[ \Rightarrow y^2 - 4y - 5 = 0\]

\[ \Rightarrow \left( y - 5 \right)\left( y + 1 \right) = 0\]

\[ \Rightarrow y = 5 \text { or }y = - 1\]

\[ \therefore 2^x = 5 \text { or  }2^x = - 1 \left( \text { not possible } \right)\]

\[\text { Taking log on both the sides, we get }: \]

\[\log 2^x = \log5\]

\[ \Rightarrow x\log2 = \log5\]

\[ \Rightarrow x = \frac{\log 5}{\log 2} = \log_2 5\]

\[ \Rightarrow x = \log_2 5\]

Disclaimer: The question in the book has some error, so, this solution is not matching with the solution given in the book. This solution here is created according to the question given in the book.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.8 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.8 | Q 4 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 4, 9, 14, ... is 254?


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all odd numbers between 100 and 200.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


Write the sum of first n odd natural numbers.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×