मराठी

Find the Sum of the Following Arithmetic Progression : (X − Y)2, (X2 + Y2), (X + Y)2, ... to N Terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms

उत्तर

(x − y)2, (x2 + y2), (x + y)2 ... to n terms

\[\text { We have }: \]

\[ a = {(x -y)}^2 , d = \left( x^2 + y^2 - {(x - y)}^2 \right) = 2xy\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ = \frac{n}{2}\left[ 2 {(x - y)}^2 + (n - 1)(2xy) \right]\]

\[ = \frac{n}{2} \times 2\left[ {(x -y)}^2 + (n - 1)(xy) \right]\]

\[ = n\left[ {(x - y)}^2 + (n - 1)(xy) \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 1.6 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Which term of the A.P. 84, 80, 76, ... is 0?


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of all integers between 84 and 719, which are multiples of 5.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×