Advertisements
Advertisements
प्रश्न
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
उत्तर
Given:
\[a_{24} = 2 a_{10} \]
\[ \Rightarrow a + \left( 24 - 1 \right)d = 2\left[ a + \left( 10 - 1 \right)d \right]\]
\[ \Rightarrow a + 23d = 2(a + 9d)\]
\[ \Rightarrow a + 23d = 2a + 18d\]
\[ \Rightarrow 5d = a . . . (i)\]
\[\text { To prove }: \]
\[ a_{72} = 2 a_{34} \]
\[\text { LHS: } a_{72} = a + \left( 72 - 1 \right)d\]
\[ \Rightarrow a_{72} = a + 71d\]
\[ \Rightarrow a_{72} = 5d + 71d \left( \text { From }(i) \right)\]
\[ \Rightarrow a_{72} = 76d\]
\[\text { RHS }: 2 a_{34} = 2\left[ a + \left( 34 - 1 \right)d \right]\]
\[ \Rightarrow 2 a_{34} = 2\left( a + 33d \right)\]
\[ \Rightarrow 2 a_{34} = 2(5d + 33d) \left( \text { Form }(i) \right)\]
\[ \Rightarrow 2 a_{34} = 2\left( 38d \right)\]
\[ \Rightarrow 2 a_{34} = 76d\]
∴ RHS = LHS
Hence, proved.
APPEARS IN
संबंधित प्रश्न
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.