Advertisements
Advertisements
प्रश्न
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
पर्याय
\[\frac{2n}{n + 1}\]
\[\frac{n}{n + 1}\]
\[\frac{n + 1}{2n}\]
\[\frac{n + 1}{n}\]
उत्तर
\[\frac{2n}{n + 1}\]
Let n be an odd number.
Given:
\[S_1 = \text { Sum of odd number of terms }\]
\[ = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\} . . . . . \left( 1 \right)\]
\[\text { Since n is odd, the number of odd places } = \frac{n + 1}{2}\]
\[ S_2 = \text { Sum of the terms of a series in odd places }\]
\[ = \frac{\left( \frac{n + 1}{2} \right)}{2}\left\{ 2a + \left( \frac{n + 1}{2} - 1 \right)2d \right\}\]
\[ = \frac{n + 1}{4}\left\{ 2a + \left( n - 1 \right)d \right\} . . . . . \left( 2 \right)\]
From equations \[\left( 1 \right) \text { and } \left( 2 \right)\] ,we have:
\[\frac{S_1}{S_2} = \frac{\frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}}{\frac{n + 1}{4}\left\{ 2a + \left( n - 1 \right)d \right\}}\]
\[ = \frac{2n}{n + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of all odd numbers between 100 and 200.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.