Advertisements
Advertisements
प्रश्न
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
पर्याय
4
6
8
10
उत्तर
\[As, S_{2n} = 3 S_n \]
\[ \Rightarrow \frac{2n}{2}\left[ 2a + \left( 2n - 1 \right)d \right] = \frac{3n}{2}\left[ 2a + \left( n - 1 \right)d \right]\]
\[ \Rightarrow 2\left[ 2a + \left( 2n - 1 \right)d \right] = 3\left[ 2a + \left( n - 1 \right)d \right]\]
\[ \Rightarrow 4a + 2\left( 2n - 1 \right)d = 6a + 3\left( n - 1 \right)d\]
\[ \Rightarrow 4a + 4nd - 2d = 6a + 3nd - 3d\]
\[ \Rightarrow 6a - 4a + 3nd - 3d - 4nd + 2d = 0\]
\[ \Rightarrow 2a - nd - d = 0\]
\[ \Rightarrow 2a - \left( n + 1 \right)d = 0\]
\[ \Rightarrow 2a = \left( n + 1 \right)d . . . . . \left( i \right)\]
\[\text { Now }, \]
\[\frac{S_{3n}}{S_n} = \frac{\frac{3n}{2}\left[ 2a + \left( 3n - 1 \right)d \right]}{\frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right]}\]
\[ = \frac{3\left[ \left( n + 1 \right)d + \left( 3n - 1 \right)d \right]}{\left[ \left( n + 1 \right)d + \left( n - 1 \right)d \right]} \left[ \text { Using } \left( i \right) \right]\]
\[ = \frac{3\left[ nd + d + 3nd - d \right]}{\left[ nd + d + nd - d \right]}\]
\[ = \frac{3\left[ 4nd \right]}{\left[ 2nd \right]}\]
\[ = 3 \times 2\]
\[ = 6\]
Hence, the correct alternative is option (b).
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all even integers between 101 and 999.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of odd integers from 1 to 2001.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
Write the common difference of an A.P. whose nth term is xn + y.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.