मराठी

If 1 a , 1 B , 1 C Are in A.P., Prove That: B + C a , C + a B , a + B C Are in A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.

उत्तर

\[\text { Given }: \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text { are  in A . P } . \]

\[ \therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c}\]

\[ \Rightarrow 2ac = ab + bc . . . . (1)\]

\[\text { To prove }: \frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c} \text { are in A . P } . \]

\[ 2\left( \frac{a + c}{b} \right) = \frac{b + c}{a} + \frac{a + b}{c}\]

\[ \Rightarrow 2ac(a + c) = bc(b + c) + ab(a + b)\]

\[\text { LHS: }2ac(a + c)\]

\[ = (ab + bc)(a + c) (\text { From }(1))\]

\[ = a^2 b + 2abc + b c^2 \]

\[\text { RHS: } bc(b + c) + ab(a + b)\]

\[ = b^2 c + b c^2 + a^2 b + a b^2 \]

\[ = b^2 c + a b^2 + b c^2 + a^2 b\]

\[ = b(bc + ab) + b c^2 + a^2 b\]

\[ = 2abc + b c^2 + a^2 b \]

\[ = a^2 b + 2abc + b c^2 (\text { From }(1))\]

\[ \therefore \text { LHS = RHS }\]

\[\text { Hence, proved } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.5 | Q 1.1 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Which term of the A.P. 4, 9, 14, ... is 254?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×