मराठी

If the Sum of Three Numbers in A.P., is 24 and Their Product is 440, Find the Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.

उत्तर

Let the three numbers in A.P. be a – da, and a + d.

According to the given information,

(a – d) + (a) + (a + d) = 24 … (1)

⇒ 3a = 24

∴ a = 8

(a – da (a + d) = 440 … (2)

⇒ (8 – d) (8) (8 + d) = 440

⇒ (8 – d) (8 + d) = 55

⇒ 64 – d2 = 55

⇒ d2 = 64 – 55 = 9

⇒ = ± 3

Therefore, when d = 3, the numbers are 5, 8, and 11 and when d = –3, the numbers are 11, 8, and 5.

Thus, the three numbers are 5, 8, and 11.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Miscellaneous Exercise | Q 2 | पृष्ठ १९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of first n odd natural numbers.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

Write the sum of first n even natural numbers.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×