मराठी

Write the Sum of First N Even Natural Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the sum of first n even natural numbers.

उत्तर

We need to find the sum of 2, 4, 6, 8...upto terms.
Here, a = 2, d = 2
We know:

\[S_n = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}\]

\[ = \frac{n}{2}\left\{ 2 \times 2 + \left( n - 1 \right)2 \right\}\]

\[ = n\left( n + 1 \right)\]

Therefore, the sum of the first n odd numbers is \[n\left( n + 1 \right)\] .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.8 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.8 | Q 7 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of all integers between 100 and 550, which are divisible by 9.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×