Advertisements
Advertisements
प्रश्न
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
उत्तर
For the first series, a = 3,
\[d_1\] = 7
For the second series, b = 63,
\[d_2\] = 2
Given:
\[a_n = b_n \]
\[ \Rightarrow a + \left( n - 1 \right) d_1 = b + \left( n - 1 \right) d_2 \]
\[ \Rightarrow 3 + \left( n - 1 \right)7 = 63 + \left( n - 1 \right)2\]
\[ \Rightarrow 3 + 7n - 7 = 63 + 2n - 2\]
\[ \Rightarrow 5n = 65\]
\[ \Rightarrow n = 13\]
Hence, the 13th terms of both the series are the same.
APPEARS IN
संबंधित प्रश्न
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 84, 80, 76, ... is 0?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of first n natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find the sum of odd integers from 1 to 2001.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Write the sum of first n even natural numbers.
If m th term of an A.P. is n and nth term is m, then write its pth term.
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.