मराठी

The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is (b+c-2a)(c+a)2(b-a). - Mathematics

Advertisements
Advertisements

प्रश्न

The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.

बेरीज

उत्तर

Let d be the common difference and n be the number of terms of the A.P.

Since the first term is a and the second term is b

Therefore, d = b – a

Also, the last term is c

So c = a + (n – 1)(b – a)   .....(Since d = b – a)

⇒ n – 1 = `(c - a)/(b - a)`

⇒ n = `1 + (c - a)/(b - a)`

= `(b - a + c - a)/(b - a)`

= `(b + c - 2a)/(b - a)`

Therefore, Sn = `n/2 (a + 1)`

= `((b + c - 2a))/(2(b - a)) (a + c)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Solved Examples [पृष्ठ १५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Solved Examples | Q 1 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of first n odd natural numbers.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×