मराठी

Let < an > Be a Sequence. Write the First Five Term in the Following: A1 = 1 = A2, an = an − 1 + an − 2, N > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2

उत्तर

a1 = 1 = a2, an = an − 1 + an − 2, n > 2

\[a_3 = a_2 + a_1 = 1 + 1 = 2\]

\[ a_4 = a_3 + a_2 = 2 + 1 = 3\]

\[ a_5 = a_4 + a_3 = 3 + 2 = 5\]

Hence, the five terms are 1, 1, 2, 3 and 5.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.1 | Q 4.2 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×