मराठी

The Fibonacci Sequence is Defined by A1 = 1 = A2, an = an − 1 + an − 2 for N > 2 Find a N + 1 a N for N = 1, 2, 3, 4, 5. - Mathematics

Advertisements
Advertisements

प्रश्न

The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 

उत्तर

a1 = 1 = a2an = an − 1 + an − 2 for > 2
Then, we have:

\[a_3 = a_2 + a_1 = 1 + 1 = 2\]

\[ a_4 = a_3 + a_2 = 2 + 1 = 3\]

\[ a_5 = a_4 + a_3 = 3 + 2 = 5\]

\[ a_6 = a_5 + a_4 = 5 + 3 = 8\]

\[\text { For } n = 1, \frac{a_{n + 1}}{a_n} = \frac{a_2}{a_1} = \frac{1}{1} = 1\]

\[\text { For }n = 2, \frac{a_{n + 1}}{a_n} = \frac{a_3}{a_2} = \frac{2}{1} = 2\]

\[\text{For } n = 3, \frac{a_{n + 1}}{a_n} = \frac{a_4}{a_3} = \frac{3}{2}\]

\[\text { For } n = 4, \frac{a_{n + 1}}{a_n} = \frac{a_5}{a_4} = \frac{5}{3}\]

\[\text { For } n = 5, \frac{a_{n + 1}}{a_n} = \frac{a_6}{a_5} = \frac{8}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.1 | Q 5 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of all odd numbers between 100 and 200.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×