Advertisements
Advertisements
प्रश्न
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Let us consider an A.P a, a + d, a + 2d, …
∴ a2 + a4 = a + d + a + 3d
= 2a + 4d
= 2a3
⇒ a3 = `(a_2 + a_4)/2`
`(a_3 + a_5)/2 = (a + 2d + a + 4d)/2`
= `(2a + 6d)/2`
⇒ a + 3d
= a4
APPEARS IN
संबंधित प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n odd natural numbers.
If m th term of an A.P. is n and nth term is m, then write its pth term.
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.