Advertisements
Advertisements
प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
उत्तर
First term = 2
Let d be the common difference of the A.P.
Therefore, the A.P. is 2, 2 + d, 2 + 2d, 2 + 3d, …
Sum of first five terms = 10 + 10d
Sum of next five terms = 10 + 35d
According to the given condition,
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 84, 80, 76, ... is 0?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of odd integers from 1 to 2001.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.