मराठी

If 9th Term of an A.P. is Zero, Prove that Its 29th Term is Double the 19th Term. - Mathematics

Advertisements
Advertisements

प्रश्न

If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.

उत्तर

Given:

\[a_9 = 0 \]

\[ \Rightarrow a + \left( 9 - 1 \right)d = 0 \left[ a_n = a + \left( n - 1 \right)d \right]\]

\[ \Rightarrow a + 8d = 0\]

\[ \Rightarrow a = - 8d . . . (i)\]

To prove:

\[a_{29} = 2 a_{19} \]

Proof:

\[\text { LHS }: a_{29} = a + \left( 29 - 1 \right)d\]

\[ = a + 28d\]

\[ = - 8d + 28d \left( \text { From }(i) \right)\]

\[ = 20d\]

\[RHS: 2 a_{19} = 2\left[ a + \left( 19 - 1 \right)d \right]\]

\[ = 2(a + 18d)\]

\[ = 2a + 36d\]

\[ = 2( - 8d) + 36d \left( \text { From }(i) \right)\]

\[ = - 16d + 36d\]

\[ = 20d\]

LHS = RHS Hence, proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 9 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 84, 80, 76, ... is 0?


Is 302 a term of the A.P. 3, 8, 13, ...?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of all integers between 100 and 550, which are divisible by 9.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the sum of first n odd natural numbers.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×