Advertisements
Advertisements
प्रश्न
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
उत्तर
Given:
\[a_6 = 19\]
\[ \Rightarrow a + \left( 6 - 1 \right)d = 19 \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ \Rightarrow a + 5d = 19 . . \left( 1 \right)\]
\[\text { And,} a_{17} = 41\]
\[ \Rightarrow a + \left( 17 - 1 \right)d = 41 \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ \Rightarrow a + 16d = 41 . . \left( 2 \right)\]
\[\text { Solving the two equations, we get, } \]
\[16d - 5d = 41 - 19\]
\[ \Rightarrow 11d = 22\]
\[ \Rightarrow d = 2 \]
\[\text { Putting d }= 2 \text { in the eqn } \left( 1 \right), \text { we get }: \]
\[a + 5 \times 2 = 19\]
\[ \Rightarrow a = 19 - 10\]
\[ \Rightarrow a = 9 \]
We know:
\[a_{40} = a + \left( 40 - 1 \right)d \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ = a + 39d\]
\[ = 9 + 39 \times 2 \]
\[ = 9 + 78 = 87\]
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.