मराठी

Which Term of the A.P. 3, 8, 13, ... is 248? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the A.P. 3, 8, 13, ... is 248?

उत्तर

 3, 8, 13...
Here, we have:
a = 3

\[d = \left( 8 - 3 \right) = 5\]

\[\text { Let } a_n = 248\]

\[ \Rightarrow a + \left( n - 1 \right)d = 248\]

\[ \Rightarrow 3 + \left( n - 1 \right)5 = 248\]

\[ \Rightarrow \left( n - 1 \right)5 = 245\]

\[ \Rightarrow n - 1 = 49\]

\[ \Rightarrow n = 50\]

Hence, 248 is the 50th term of the given A.P.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 3.1 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


How many numbers of two digit are divisible by 3?


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×