मराठी

How Many Numbers of Two Digit Are Divisible by 3? - Mathematics

Advertisements
Advertisements

प्रश्न

How many numbers of two digit are divisible by 3?

उत्तर

The two digit numbers that are divisible by 3 are:
12, 15, 18...96, 99
This is an A.P. whose first term is 12 and the common difference is 3.

\[\text { We have }: \]

\[ a_n = 99\]

\[ \Rightarrow 12 + (n - 1)3 = 99\]

\[ \Rightarrow (n - 1)3 = 87\]

\[ \Rightarrow (n - 1) = 29\]

\[ \Rightarrow n = 30\]

Thus, there are 30 such terms.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 18 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 3, 8, 13, ... is 248?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the sum of first n even natural numbers.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×