Advertisements
Advertisements
प्रश्न
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
पर्याय
`q^3/2`
mnq
q3
(m + n)q2
उत्तर
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals q3.
Explanation:
The given series is A.P. whose first term is a and common difference is d
∴ Sn = `n/2[2a + (n - 1)d]` = qn2
⇒ 2a + (n – 1)d = 2qn ....(i)
Sm = `m/2 [2a + (m - 1)d]` = qm2
⇒ 2a + (m – 1)d = 2qm .....(ii)
Solving equation (i) and equation (ii) we get
2a + (m – 1)d = 2qm
2a + (n – 1)d = 2qn
(–) (–) (–)
(m – n)d = 2qm – 2qn
(m – n)d = 2q(m – n)
∴ d = 2q
Putting the value of d in equation (ii) we get
2a + (m – 1) · 2q = 2qm
⇒ 2a = 2qm – (m –1)2q
⇒ 2a = 2q(m – m + 1)
⇒ 2a = 2q
⇒ a = q
∴ Sq = `q/2 [2a + (q - 1)d]`
= `q/2[2q + (q - 1)2q]`
= `q/2[2q + 2q^2 - 2q]`
= `q/2 xx 2q^2`
= q3
APPEARS IN
संबंधित प्रश्न
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of first n natural numbers.
Find the sum of all odd numbers between 100 and 200.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. the sum of whose first n terms is
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.