Advertisements
Advertisements
प्रश्न
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
विकल्प
`q^3/2`
mnq
q3
(m + n)q2
उत्तर
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals q3.
Explanation:
The given series is A.P. whose first term is a and common difference is d
∴ Sn = `n/2[2a + (n - 1)d]` = qn2
⇒ 2a + (n – 1)d = 2qn ....(i)
Sm = `m/2 [2a + (m - 1)d]` = qm2
⇒ 2a + (m – 1)d = 2qm .....(ii)
Solving equation (i) and equation (ii) we get
2a + (m – 1)d = 2qm
2a + (n – 1)d = 2qn
(–) (–) (–)
(m – n)d = 2qm – 2qn
(m – n)d = 2q(m – n)
∴ d = 2q
Putting the value of d in equation (ii) we get
2a + (m – 1) · 2q = 2qm
⇒ 2a = 2qm – (m –1)2q
⇒ 2a = 2q(m – m + 1)
⇒ 2a = 2q
⇒ a = q
∴ Sq = `q/2 [2a + (q - 1)d]`
= `q/2[2q + (q - 1)2q]`
= `q/2[2q + 2q^2 - 2q]`
= `q/2 xx 2q^2`
= q3
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.