हिंदी

Let < an > Be a Sequence. Write the First Five Term in the Following: A1 = 1 = A2, an = an − 1 + an − 2, N > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2

उत्तर

a1 = 1 = a2, an = an − 1 + an − 2, n > 2

\[a_3 = a_2 + a_1 = 1 + 1 = 2\]

\[ a_4 = a_3 + a_2 = 2 + 1 = 3\]

\[ a_5 = a_4 + a_3 = 3 + 2 = 5\]

Hence, the five terms are 1, 1, 2, 3 and 5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.1 | Q 4.2 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the common difference of an A.P. whose nth term is xn + y.


Write the sum of first n even natural numbers.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×