Advertisements
Advertisements
प्रश्न
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
विकल्प
sec a1 − sec an
cosec a1 − cosec an
cot a1 − cot an
tan a1 − tan an
उत्तर
cot a1 − cot an
We have:
\[\sin d \left( \cos ec \ a_1 \cos ec \ a_2 + cos \ ec a_2 \cos ec \ a_3 + . . . . + \cos ec a_{n - 1} \cos ec \ a_n \right)\]
\[ = \frac{\sin d}{\sin a_1 \sin a_2} + \frac{\sin d}{\sin a_2 \sin a_3} + . . . . . + \frac{\sin d}{\sin a_{n - 1} \sin a_n}\]
\[ = \frac{\sin ( a_2 - a_1 )}{\sin a_1 \sin a_2} + \frac{\sin ( a_3 - a_2 )}{\sin a_2 \sin a_3} + . . . . + \frac{\sin ( a_n - a_{n - 1} )}{\sin a_{n - 1} \sin a_n}\]
\[ = \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\sin a_1 \sin a_2} + \frac{\sin a_3 \cos a_2 - \cos a_3 \sin a_2}{\sin a_1 \sin a_2} + . . . . . + \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\sin a_1 \sin a_2}\]
\[ = \left( \cot a_1 - \cot a_2 \right) + \left( \cot a_2 - \cot a_3 \right) + . . . . . + \left( \cot a_{n - 1} - \cot a_n \right)\]
\[ = \cot a_1 - \cot a_n\]
APPEARS IN
संबंधित प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of odd integers from 1 to 2001.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n odd natural numbers.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.