English

If A1, A2, A3, .... an Are in A.P. with Common Difference D, Then the Sum of the Series Sin D [Cosec A1 Cosec A2 + Cosec A1 Cosec A3 + .... + Cosec an − 1 Cosec An] is - Mathematics

Advertisements
Advertisements

Question

If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is

Options

  •  sec a1 − sec an

  • cosec a1 − cosec an

  • cot a1 − cot an

  • tan a1 − tan an

MCQ

Solution

 cot a1 − cot an

We have:

\[\sin d \left( \cos ec \ a_1 \cos ec \ a_2 + cos \ ec a_2 \cos ec \ a_3 + . . . . + \cos ec a_{n - 1} \cos ec \ a_n  \right)\]

\[ = \frac{\sin d}{\sin a_1 \sin a_2} + \frac{\sin d}{\sin a_2 \sin a_3} + . . . . . + \frac{\sin d}{\sin a_{n - 1} \sin a_n}\]

\[ = \frac{\sin ( a_2 - a_1 )}{\sin a_1 \sin a_2} + \frac{\sin ( a_3 - a_2 )}{\sin a_2 \sin a_3} + . . . . + \frac{\sin ( a_n - a_{n - 1} )}{\sin a_{n - 1} \sin a_n}\]

\[ = \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\sin a_1 \sin a_2} + \frac{\sin a_3 \cos a_2 - \cos a_3 \sin a_2}{\sin a_1 \sin a_2} + . . . . . + \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\sin a_1 \sin a_2}\]

\[ = \left( \cot a_1 - \cot a_2 \right) + \left( \cot a_2 - \cot a_3 \right) + . . . . . + \left( \cot a_{n - 1} - \cot a_n \right)\]

\[ = \cot a_1 - \cot a_n\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.9 | Q 10 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of odd integers from 1 to 2001.


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Is 68 a term of the A.P. 7, 10, 13, ...?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all even integers between 101 and 999.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


Write the common difference of an A.P. whose nth term is xn + y.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×