Advertisements
Advertisements
Question
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
Solution
We have sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an)
= `sin d[1/(sina_1 sina_2) + 1/(sina_2 sina_3) + ... + 1/(sina_(n - 1) sina_n)]`
= `(sin(a_2 - a_1))/(sina_1 sina_2) + (sin(a_3 - a_2))/(sina_2 sina_3) + ... + (sin(a_n - a_(n - 1)))/(sina_(n - 1) sina_n)`
= `(sina_2 cos a_1 - cosa_2 sina_1)/(sina_1 sina_2) + (sina_3 cosa_2 - cosa_3 sina_2)/(sina_2 sina_3) + ... + (sina_n cosa_(n - 1) - cosa_n sina_(n - 1))/(sina_(n - 1) sina_n)`
= (cot a1 – cot a2) + (cot a2 – cot a3) + ... + (cot an–1 – cot an)
= cot a1 – cot an
APPEARS IN
RELATED QUESTIONS
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Find:
10th term of the A.P. 1, 4, 7, 10, ...
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.