Advertisements
Advertisements
Question
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
Solution
Let n be the time in which the man saved Rs 200.
Here, d= 4, a = 32
We know:
\[S_n = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}\]
\[ \Rightarrow 200 = \frac{n}{2}\left\{ 2 \times 32 + \left( n - 1 \right)4 \right\}\]
\[ \Rightarrow 400 = 64n + 4 n^2 - 4n\]
\[ \Rightarrow 4 n^2 + 60n - 400 = 0\]
\[ \Rightarrow n^2 + 15n - 100 = 0\]
\[ \Rightarrow n^2 + 20n - 5n - 100 = 0\]
\[ \Rightarrow \left( n + 20 \right)\left( n - 5 \right) = 0\]
\[ \Rightarrow n = 5, n = - 20 \left( \text { Rejecting the negative value } \right)\]
Therefore, the man took 5 years to save Rs 200.
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
Write the common difference of an A.P. whose nth term is xn + y.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If m th term of an A.P. is n and nth term is m, then write its pth term.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.