Advertisements
Advertisements
Question
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
Solution
Let
\[S_{40}\] denote the total loan amount to be paid in 40 annual instalments.
∴ \[S_{40}\] = 3600
Let Rs a be the value of the first instalment and Rs d be the common difference.
We know:
\[S_n = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}\]
\[\Rightarrow \frac{40}{2}\left\{ 2a + \left( 40 - 1 \right)d \right\} = 3600\]
\[ \Rightarrow 20\left\{ 2a + 39d \right\} = 3600\]
\[ \Rightarrow 2a + 39d = 180 . . . . . . \left( 1 \right)\]
\[\text { Also, } S_{40} - S_{30} = \frac{1}{3} \times 3600\]
\[ \Rightarrow 3600 - S_{30} = 1200\]
\[ \Rightarrow S_{30} = 2400\]
\[ \Rightarrow \frac{30}{2}\left\{ 2a + \left( 30 - 1 \right)d \right\} = 2400\]
\[ \Rightarrow 15\left\{ 2a + 29d \right\} = 2400\]
\[ \Rightarrow 2a + 29d = 160 . . . . . \left( 2 \right)\]
On solving equations \[\left( 1 \right) \text { and } \left( 2 \right)\]
we get:
d = 2 and a =51
Hence, the value of the first instalment is Rs 51
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n natural numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
Write the common difference of an A.P. the sum of whose first n terms is
Write the sum of first n odd natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.