English

A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter - Mathematics

Advertisements
Advertisements

Question

A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month

Sum

Solution

Given that fixed increment in the salary of a man

= Rs. 320 each month

Initial salary = Rs. 5200 which makes an A.P

whose first term (a) = Rs. 5200 and common difference (d) = Rs. 320

Salary for the tenth month 

a10 = a + (n – 1)d

= 5200 + (10 – 1) × 320

= 5200 + 2880

= Rs. 8080

Hence, the required amount is Rs. 8080

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 161]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 3.(i) | Page 161

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Which term of the A.P. 3, 8, 13, ... is 248?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n odd natural numbers.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


Write the sum of first n even natural numbers.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×