Advertisements
Advertisements
प्रश्न
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
उत्तर
Given that fixed increment in the salary of a man
= Rs. 320 each month
Initial salary = Rs. 5200 which makes an A.P
whose first term (a) = Rs. 5200 and common difference (d) = Rs. 320
Salary for the tenth month
a10 = a + (n – 1)d
= 5200 + (10 – 1) × 320
= 5200 + 2880
= Rs. 8080
Hence, the required amount is Rs. 8080
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of odd integers from 1 to 2001.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
Write the common difference of an A.P. whose nth term is xn + y.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.