मराठी

If A, B, C Are in G.P. and A1/X = B1/Y = C1/Z, Then Xyz Are in - Mathematics

Advertisements
Advertisements

प्रश्न

If abc are in G.P. and a1/b1/y = c1/z, then xyz are in

पर्याय

  • (a) AP

  • (b) GP

  • (c) HP

  • (d) none of these

MCQ

उत्तर

(a) AP 

\[\text{ a, b and c are in G . P } . \]
\[ \therefore b^2 = ac\]
\[\text{ Taking log on both the sides }: \]
\[2\log b = \log a + \log c . . . . . . . . \left( i \right)\]
\[Now, a^\frac{1}{x} = b^\frac{1}{y} = c^\frac{1}{z} \]
\[\text{ Taking \log on both the sides }: \]
\[\frac{\log a}{x} = \frac{\log b}{y} = \frac{\log c}{z} . . . . . . . . \left( ii \right)\]
\[\text{ Now, comparing } \left( i \right) \text{ and } \left( ii \right): \]
\[\frac{\log a}{x} = \frac{\log a + \log c}{2y} = \frac{\log c}{z}\]
\[ \Rightarrow \frac{\log a}{x} = \frac{\log a + \log c}{2y} \text{ and } \frac{\log a}{x} = \frac{\log c}{z}\]
\[ \Rightarrow \log a \left( 2y - x \right) = xlog c \text{ and } \frac{\log a}{\log c} = \frac{x}{z}\]
\[ \Rightarrow \frac{\log a}{\log c} = \frac{x}{\left( 2y - x \right)} \text{ and } \frac{\log a}{\log c} = \frac{x}{z}\]
\[ \Rightarrow \frac{x}{\left( 2y - x \right)} = \frac{x}{z}\]
\[ \Rightarrow 2y = x + z\]
\[\text{ Thus, x, y and z are in A . P } . \]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 5 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 84, 80, 76, ... is 0?


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of all odd numbers between 100 and 200.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


Write the sum of first n odd natural numbers.


Write the sum of first n even natural numbers.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×